

C₁-Symmetric Pentacoordinate Anilidopyridylpyrrolide Zirconium(IV) Complexes as Highly Isospecific Olefin Polymerization Catalysts [Macromolecules 2010, 43, 10.1021/ma101789w]. Gang Li, Marina Lamberti, Sebastiano D'Amora, and Claudio Pellecchia*

Unfortunately, an error was missed in the proof, and the molecular weights of the polyethylene samples (Table 1, column 5, runs 1 and 2) were erroneously indicated as 185 and 49 kg/mol. These values should be replaced as shown in Table 1.

Table 1. Ethylene Polymerization Results^a

run	precat.	activity b	$T_{\rm m}(^{\circ}{\rm C})$	$M_{ m w}$ (kg/mol)	PDI
19	1	1841	136.5	1850	2.1
2	2	1035	135.1	490	3.8
3	3	905	136.0	n.d. ^c	n.d.c

^a General conditions: precatalyst, 2.5 μ mol; toluene, 100 mL; cocatalyst, $Al^{i}Bu_{2}H/Zr = 30$, $Al_{(MAO)}/Zr = 1000$; aging time, 10 min; ethylene pressure, 1 atm; polymerization time, 7 min; polymerization temperature, 25 °C; dried MAO obtained by distilling off the solvent from the commercial solution. ^b Activity: kg_{PE}/(mol Zr h atm). ^c n.d. = not determined.12

The sentence "In comparison with the unsubstituted complex 1, introduction of bulky substituents on the bridging methylene atom resulted in slight decreases of productivities and polymer melting points (T_m) , and in a significant decrease of molecular weights ($M_{\rm w} = 49 \text{ kg/}$ mol for 2)" should read as follows: "In comparison with the unsubstituted complex 1, introduction of bulky substituents on the bridging methylene atom resulted in slight decreases of productivities and polymer melting points $(T_{\rm m})$, and in a significant decrease of molecular weights $(M_{\rm w} = 490 \text{ kg/mol for 2})$ ".

DOI: 10.1021/ma102396e Published on Web 11/04/2010